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Abstract 

The estimation of individual instabilities of N clocks, when only differences of phase-time 

clocks readings are available, can be carried out even supposing cross-correlation between 

clocks. Based on the original analysis of this problem, developed by P. Tavella and A. 

Premoli, and the Kuhn-Tucker theorem (1951), a new way to solve the constrained 

minimization problem will be introduced. We propose our particular Kuhn-Tucker 

equations: The already well-known constraint function and two new candidates objective 

functions. Advantages and inconveniences in the objective function election will be 

considered. Finally, our proposal will consist of solving two constrained minimization 

problems: the first of them to obtain an intermediate solution to be used as initial condition 

in the second minimization problem. Examples with some experimental data from the Real 

Observatorio de la Armada en San Fernando illustrate the capabilities of this proposal. 

INTRODUCTION 

It is well known that an useful mathematical tool to characterize the stability of any device is an 

estimation of the variance by using the available measurements. When the stability of several clocks 

is evaluated, the absolute variance cannot be directly estimated because the measurement data 

available are time deviations between pairs of real clocks. 

In past years, many methods were introduced to solve this problem: from the classical and popular 

“three-cornered-hat” method, to the subsequent generalizations to N clocks [l], but all the works 

assume the hypothesis of independence between clocks (and therefore, the hypothesis of null cross- 

correlation variables). The problem so resolved occasionally produces negative estimates of variance; 

this fact may be attributed to several causes, the more notable one to accept incorrelation between 

clocks. 

In a recent work, A. Premoli and P. Tavella [2] expound lifting the assumption of uncorrelation, and 

proposed a revisited version of the three-cornered-hat method, consistent and formally equivalent to 

the classical one when clocks are uncorrelated, but that no longer produces negative estimates of 

variance. Later, the same authors establish the theoretical basis to undertake the problem generalized 
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to N clocks, and demonstrate that the arbitrariness in estimating the solution is reduced when the 

number of compared clock increases [3]. 

At 30* PTTI, F. Torcaso, C.R. Ekstrom, E.A. Burt,and D.N. Matsakis proposed a numerical method 

for the practical resolution of the problem generalized to N clocks [4]. 

The goal of this work is to propose an alternative method, based on the use of a new objective 

function, with a better physical meaning. The technique will be applied to simulated and real series of 

data. The obtained results will be finahy discussed. 

NOTATION Am DEFINITIONS 

The absolute estimated variance can only be calculated from time deviations between a physical 

clock and an ideal one, but a good approach can be carried out from the existing relations between 

absolute variances and covariances (jointly called (co)variances) and their corresponding relatives 

between individual clocks. 

Let X’ = {Xi :kll} for i=l , . . . , N be the time differences of the i” clock referenced to an ideal 

one, measured at intervals of 2, seconds. Denoting the absolute fractional frequency of the i* clock, 

averaged over a time z = m Z, starting at time t, , by: 

The Allan variance, or twosample variance, can be expressed as: 

(1) 

where 7, r2 denote pairs of adjacent absolute fractional frequencies and ( ) denote mathematical 

expectation or infinite time average. We suppose here, as usual, that the process of averaged fractional 

frequencies is stationary and ergodic, making the expression (2) well-defined. 

Let now XL = {xi :kZl}for i=l , . . . , N - 1 represent the time differences of the i” clock referred to 

the Z@’ one taken as a reference: then we can express x’ = XL - X N . The corresponding fractional 

frequencies are: 

i 
g (T) = Xk+m -‘f, 

z 
(3) 
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The absolute and relative fractional frequencies are related by the following expression: 

7; (r) = F; - yk” , k 2 1, and the Allan variance of i* clock referenced to h@ clock can be expressed 

by: 

Both sii(5) and rii (r) are theoretical quantities impossible to obtain experimentally. They could only 

be estimated from a finite number of samples Lf (z) . The estimate of Allan variance can be obtained 

by the expression: 

(4) 

1 M-2m 

sii (r) = 
C( 

i 

2(M-2m)m2Z; t=l 
Xk+2m - 2 XL,, + xi ) 

In this paper, the Allan covariance of clocks i” and j” referenced to the fl clock are needed, 

moreover, we will attempt to estimate the dereferenced Allan covariances between pair of clocks. We 

define both statistical parameters as they were introduced in [4]: 

We introduce again the estimates of both quantities as: 

1 M-2m 

3, (T) = C( 2(M-2m)m2 2% k=l 
X;+2m -2x;+, +x:)(x:+2, -2x;+, +x;) 

1 M-2m 

C( 2(M-2m)m2r,2 k=l 
X;+2m -2 XL,, +x:)(x;+,, -2 xi+, +x;) 

(5) 

(6) 

It is obvious that a covariance is reduced to a variance making i=j, so it is easy to derive the 

expression for Pii from pi,. . 

In the subsequent paragraphs, we will assume z as the time interval in which we want to characterize 

the stability, so we will omit the symbol z assuming that time interval. 

According to the previous expressions, the following relations can be deduced: 

(7) 

and 

s, = pi,. + PNN - P$/ - PjN 

(8) 

(9) 
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These quantities can be jointly denoted as matrices. The N by N matrices R and R are related to the 

dereferenced (co)variances; on the other hand, the (N-l) by (N-l) matrices S and s are related to the 

(co)variances referenced to a Nth clock. 

THE PREVIOUS APROACHES 

Before introducing the new proposal of this work, we need to make a review on the previous 

approaches based on similar arguments, that is: the Tavella-Premoli approach [2], [3] and the F. 

Torcaso et al. approach [4]. 

In a first approach, Tavella and Premoli propose rejecting the hypothesis of uncorrelated clocks, 
leading to an underdetermined linear system. They introduce the estimates of covariance S, and a 

suitable optimization criterion to calculate the complete covariance matrix R . Then, they analyze in 

detail the case of three clocks, obtaining finally a quasi-analytical solution. 

According to their definitions, both s and R are symmetric matrices, so the number of unknown 

quantities is reduced to N (N + 1)/2, while the number of equations is (N - l)N/2. For the three- 

clock case, the six unknown quantities are the (co)va.riances tI,, fz2, ?33, f12, p13, and Fu and the 

three equations are: 

s 11 = PII + P33 - 2 PI3 

!: 12 = PI2 + P3J - PI3 - Pu 

!: 22 = p22 + f33 - 2 f23 

(10) 

Nevertheless, they outlined an important constraint which bounds the solution space and guarantees a 

significant result: the positive definiteness of any covariance matrix. They expressed this constraint as 

a function H(P,, , Pz3, P,, ), so that the matrix R would be positive-defrnite,provided that the function 

H (P,, 9 p23 , pg ) > 0 : 

ml3 9 p23 9 f33 I= f33 - (43 - p33 9 p23 - f33 > s-l (43 - p33 9 p23 - p33 )’ (11) 

This function, when equalled to zero, represents the bound of the solution domain, and geometrically 

it represents an elliptic paraboloid. Afterwards, the authors suggested the determination of the values 
A 
P,s, F2s,and fss by means of the resolution of a minimization problem, and they defined an objective 

function [G(PIs, P23, P33 )]‘that is directly proportional to the quadratic sum of covariances and 

inversely to H: 

F(P13,P23,P33 )=K[;~;vP;9P; ); 
13’ 23’ 33 

(12) 
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Therefore, they minimized the “global correlation” among clocks maintaining the positive definiteness 

of R leading to the values F,“, , i$, and ;,“3. The quantities that minimize the objective function are 

then substituted in (10) concluding the calculation of R . 

Because of the convex character of the objective function, the solution to the minimization problem is 

unique. This solution is reduced to the classical three-cornered-hat solution provided that 

J,, >s,,,sZ2 >s,2 and& >O. 

In a second paper, Tavella and Premoli look into the generic problem for N clocks. They demonstrate 
i 

that the matrix R is positive definite if and only if OR’ > 0, derivin, c a compact expression to define 

the constraint: 

(13) 

whose bound can be determined by 

geometrically an elliptic hyper-paraboloid. 

making H(PIN , . . . , PNN ) = 0. This bound represents 

Another interesting conclusion formulated is that the domain delimited by the comparison of N clocks 

has a higher dimension due to the additional variable PtN_,), , but that for any value of this parameter, 

it can never be larger than the domain obtained from the comparison of N-l clocks. 

The reduction in the amount of arbitrariness in the determination of the covariance matrix R led F. 

Torcaso ef al. [4], to think about the generalization of the Tavella-Premoli scheme. 

These authors suggest to modify the objective function (12). The new objective function, denoted as 

the Tavella-Premoli function, is: 

c P.’ 
i<j rl 

H2(PIN,...,PNN) 
(14) 

where H is given by (13). The presence of H squared in the denominator keeps the minimization 

problem scale-invariant and facilitates the numeric resolution. The initial proposed conditions are 

selected in order to assure that the initial data lie between the constraint: 

Pz =Ofori<N (1% 

ini 1 
P NN =cp s* = (l)..., 1)s-’ (l,..., 1)’ 
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The minimization problem has a unique solution due to the considerations of convexity already 

mentioned. The N variables pihr = Pz i=l ,..., IV, can be determined this way. The remaining 

quantities are determined by resolving the system of (N - 1) N/2 equations stated in (9). 

THE CONSTRAINED MINIMIZATION PROBLEM 

The reduction of arbitrariness on the solution domain due to the increasing of the number of clocks is 

a justified reason in order to look for other valid alternatives that generalize the expounded problem 

by Tavella and Premoli. 

The goal of this new proposal is to reach a solution in close agreement with the physical reality. This 

can be attained avoiding the distortion of the objective function with the constraint condition. This is 

the reason we have used the Kuhn-Tucker (rcr) theorem, published in 1951. This theorem states the 

following: 

“Given a problem of the type: 

min f(x) 

gj(x)lO, i=l,...,m 

(16) 

with a local minimum in x,, . If the gradient vectors of the saturated restrictions in x,, are linearly 

independent over x mi,, , then each saturated restriction has a positive number ai 2 0 (known as KT 

multiplier) associated, that verifies: 

vf(xmin)+rai mvgi(xmin)=o 
i=l 

(17) 

so that, in the previous expression, all the null Multipliers appearing in the restrictions are associated 

to the not saturated restrictions. In order to get this, the following conditions are imposed: 

izi .gi(xmin)=O, i=l,..., m. (18) 

A restriction is said to be saturated when the optimal solution is verified as equality, otherwise the 

restriction is said not saturated. 

The KT equations are necessary conditions for optimality for a constrained minimization probiem. If 

the problem is a so-called convex programming problem, that is, f(x) and gi (x) i = 1,. . . , m. are 

convex functions, then the KT equations are both necessary and sufficient conditions for a global 

solution point. If the objective function is also strictly convex, in the case the minimum exists that is 

unique. 

The KT theorem suggests the employment of a constraint function derived from the (13) condition, 
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modified appropriately so that make possible the application of the KT theorem: 

(1% 

The strict inequality condition that comes in (19) could seem an important limitation, but it is not so 

from a practical point of view. On the other hand, K denotes K = N-1 si has been introduced for the 
;!‘r 

sake of adimensionality and to facilitate the numeric resolution. This constraint function represents 

geometrically the interior of an elliptic hyper-paraboloid, as was seen previously, being therefore a 

convex function. 

Two objective functions could be candidates in the minimization problem, each one with their 

advantages and disadvantages. The first one seems to be obvious, knowing the antecedents of the 

problem: 

6 (f 

c i<j pi,’ 

lN’*‘.‘PNN)= K2 (20) 

The second one has greater physical meaning, although it presents certain inconveniences when it is 

used in a minimization problem: 

F (? * :N,...,~NN)=~i<j~= . u Cicjpi 

II 

(21) 

The convexity of the function done by (20) could be easily demonstrated through the Hessian matrix 

because the second derivatives are constant. A function that admits derivation partially twice is 

convex if and only if its Hessian matrix is positive-semidefinite for any value in the domain. If the 

Hessian matrix is positive-definite, the function will be strictly convex. The obtained Hessian matrix 

eigenvalues are the following: 

ai =2(N-2), i=l,...,N-2 (22) 

a 
N* +N-4-dN4 +2N3 -15N* +16N 

N-l = 
2 

AN = 
N* +N-4+dN4 +2N3 -15N* +16N 

2 

For N 13, we conclude that Fr function is strictly convex. 

Regarding to the second alternative: F2, it could not be sure that an unique solution exists. We 

illustrated an example in Figure 1 in which this fact is stated. In that Figure are shown slices of the 

elliptic paraboloid, that limits the solution domain for $ = (1.09,1.18; 1.18,11.35). s has been 

calculated over three simulated series of gaussian, white frequency noise data, with Allan variances 
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and correlated coefficients predetermined: 4 1 = 2,P,, = 16,~~s = 1 y ipiji = 0.68 Vi # j . Figures la, lb 

and lc shown the planes Ps3 = (2.. (1 1)S-1 (1 l)r)-l = 0.54, Fj3 = 0.75, and Ps3 = 1 .OO including the 

initial point (0,0,0.54) and the prospective solution (0.97,2.73,1.00) . It can be seen in each slice the 

regions where F2 is positive-definite (+) or it is not (-). It seems to be obvious that the function (21) 

does not lead to an unique solution. In any case, this function behaves in a soft way, without wide 

variations. 

The last consideration is the main reason why a good election of the-initial conditions is considered 

essential: The closer the initial condition to the final solution is, the higher will be the probability to 

converge to it. 

The final suggestion consists of the following: In a first approximation, equations (20) and (19), with 

the initial conditions (15), allow calculation of a unique solution (minimum of the quadratic mean 

of covariances). This solution is used as initial condition over N minimization problems, each one 

done by a rotation of the N clocks, taking in each case a different clock as reference clock. The value 

reached by F2 for the final solution should be lower than the initial value, so the N possible solutions 

are better than the solution obtained in the first step (from a global minimum of the quadratic mean of 

correlation coefficients point of view). The last step consist of selecting some of the N solutions; for 

this, we could apply some validation test able to select the best solution. The used test is based on two 

criteria: 

1. Reoetitiousness of each certain final solution 

2. Homogeneity of the obtained crosscorrelation coefficients. 

The first criterion is the more important, its application being enough. When the first criterion fails, 

the second one, that selects the solution that makes smaller and more homogeneous 

values of the correlation coefficients, is applied: 

the absolute 

The robustness of the algorithm could increase considering the N solutions reached 

conditions (15) are applied minimizing F2 . 
when initial 

If there are any suspicions that two clocks are more or less correlated than the others, F1 and F2 

might be formulated by introducing a covariance factor for each covariance term. 
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RESULTS 

To illustrate the technique described in the previous section, simulated series of data with a pre-set 

covariance matrix R were used, having the considered cross-correlation lpijl = 0.10 V i f j . 

We will pay attention over the individual variances specially (diagonal of II ). 

When three clocks were considered, the results obtained were better than those obtained with the two 

previous approaches, but we have a relative error that comes to be up to 75%. The solution improves 

drastically when four or more clocks are considered. This can be seen in Table 1, where. the results 

obtained by means of this method and by the previous one proposed by F. Torcaso et al., are 

indicated, after working the covariance matrix (24) calculated from (7). 

S= 

'2.78 0.95 2.10 

0.95 4.60 2.58 

2.10 2.58 394.57 

(24) 

41 

True value 2.03 

Estimated by F. Torcaso. et al. method. 2.09 

New proposal: Intermediate solution. 1.60 

New proposal: Final estimate. 1.81 

Table 1. Comparison among true and estimated Alian variances. 

42 43 44 

4.03 397.44 1.02 

3.22 391.43 2.14 

2.95 391.77 1.88 

3.64 392.45 0.97 

Table 2 shows the relative error made for each case. 

Estimated by F. Torcaso et al. method. 

New proposal: Intermediate solution. 

New proposal: Final estimate. 

Table 2 . Relative errors (M ). 
XTrur 

clock 1 clock 2 clock 3 clock 4 

0.03 0.20 0.02 1.10 

0.21 0.27 0.01 0.84 

0.11 0.10 0.01 0.05 

Tables 1 and 2 don’t show significant differences between the estimate proposed by F. Torcaso et al. 

and our intermediate solution, but both estimates introduce high relative errors: the lower the Allan 

variance is the higher is its relative error. These inadequacies don’t seem to exist in our final solution. 

Nevertheless, we should keep in mind that the simulated data used to calculate the matrix $ have 

equal cross-correlation values (in absolute value), which could explain the good results obtained. 
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35 718 14 896 16 113 12 1223 14 1569 31422 35 583 - 

Referenced to UTC scale 0.14 1.97 29.01 94.61 9.16 5.93 0.47 

Estimated by F. Torcaso. et al. method. 1 .oo 2.51 28.59 89.52 9.29 6.35 1.11 

New proposal: Intermediate solution. 1.93 1.79 35.75 100.83 6.62 7.37 1.58 

New proposal: Final estimate. 0.20 1.58 30.25 93.34 8.65 6.28 0.38 

Table 3. Comparison of estimated Allan variances evaluated according to several alternatives. 

The technique has also been applied on phase-time deviation data obtained from atomic clocks at the 

Real Observatorio de la Armada en San Fernando (ROA). Data correspond to seven commercial 

cesium-beam standards over a period of two years (1996-1997): standards 583 and 7 18 are HP 5071 

high performance models; the 896,569 and 1569 are HP 5061 Opt.-004; the 1223 was an HP 5061A 

and the 113 was an OSCILLOQUARTZ model 3200; the series of data were taken at 5-day intervals, 

with the purpose of knowing the phase-time deviation relative to UTC. The Allan covariance matrix 

was evaluated for an integration time of 20 days, with overlapping samples; results were compared 

using the Allan covariance matrix related to the (co)variances referred to the UTC scale (for a time 

interval z = 20d., we considered that the UTC scale is quite more stable than any of our clocks, and 

thus could be supposed quasi-ideal). The selected time interval is considered wide enough so that 

correlation exists among the clocks. The obtained results are shown in Table 3, where numerical values 

have been scaled by 102’: 

At this point, we would like to emphasize that the time period was selected in this way, because in this 

epoch old and new clocks cohabited. 

When we look at the Table 3 thoroughly, two results stand out from the rest: 

1. 

2. 

No prominent difference exists between the procedure described by F. Torcaso et al. [4], and the 

intermediate solution obtained when the constraint condition is separated from the objective 

function. 

Results estimated with the new proposal seem to be more in agreement with those “expected”: 

usually, minimizing the quadratic sum of covariances produces a pessimistic estimate of the 

stability for the most stable clocks when there is strong heterogeneity among them; this doesn’t 

happen with the new proposal. 

CONCLUSIONS 

Separating the constraint condition of the objective function doesn’t seem to introduce important 

benefits, because the solutions reached in both cases are very similar. Nevertheless, this new estimate 

truly makes minimum the quadratic sum of covariances. 
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The resolution of the problem in two phases supposes an important qualitative improvement in the 

estimation of the solution, since the second objective function used has greater physical meaning. The 

existence of several minima for this objective function should not be a problem when applying the 

procedure that has been described above. 

The minimization algorithm, as well as the validation tests, is easy to implement, which,along with 

next to the goodness of the obtained results, could convert it in a very useful method for estimating 

the frequency stability. 
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Figure 1. Character of an Hessian matrix corresponding to an particular example for three clocks. 
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